Synthesis of Biocompatible Nanocomposite Hydrogel as a Local Drug Delivery System

نویسندگان

  • J. Bako
  • M. Szepesi
  • Z. M. Borbely
  • C. Hegedus
  • J. Borbely
چکیده

Nanocomposite biocompatible hydrogels (NCHG) were synthesised as model systems for in situ cured potentially local drug delivery devices for curing periodontal infections. The composite consists of the following components: nanoparticles (NPs), matrix gel, and chlorhexidine (CHX) as antibacterial drug. The NPs were obtained by free radical initiated copolymerization of the monomers, 2-hydroxyethyl methacrylate (HEMA) and polyethyleneglycol dimethacrylate (PEGDMA), in aqueous solution. The same monomers were used to prepare crosslinked matrices by photopolymerization. NCHGs were obtained by mixing NPs, monomers, and drug in an aqueous solution then crosslinked by photopolymerization. Studies of release kinetics revealed that on average 60% of the loaded drug was released. The most rapid release was observed over a 24 hour period for matrix gels with low crosslinking density. For NCHGs the release period exceeded 48 hours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Montmorillonite Nanocomposite Hydrogel Based on Poly(acrylicacid-co-acrylamide): Polymer Carrier for Controlled Release Systems

In this paper, the synthesis of new montmorillonite nanocomposite hydrogel (MMTNH) based on poly (acrylic acid-co-acrylamide) grafted onto starch, is described. Montmorillonite (MMT) as nanometer base, acrylic acid (AA) and acrylamide (AAm) as monomers, ammonium persulfate (APS) as an initiator, N,N-methylenebisacrylamide (MBA) as a crosslinker and starch as a biocompatible polymer were pre...

متن کامل

Synthesis and structural properties of Polyvinylpyrrolidone based nanocomposite hydrogels for isoniazid drug delivery

In this study, several examples of hydrogels and nanocomposite hydrogels based on PVP with different content of montmorillonite nanoclay were prepared. Then, the swelling of hydrogels and kinetics of drug delivery of hydrogel in an environment similar to the body (pH 7.4) were examined. The effect of nanoparticle different percentages on the hydrogel was clearly observed. Then kinetics of drug ...

متن کامل

Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obta...

متن کامل

Modification of Polyvinyl Alcohol via Atom Transfer Radical Polymerization for Targeted Drug Delivery Applications

In current study,a hydrogel based on biocompatible polymerwas prepared. The functionalization of polyvinyl alcohol (PVA)with epichlorohydrin(ECH) to produce epichlorohydrin-g-polyvinyl alcohol (PVA/ECH) as a suitable macroinitiator for atom transfer radical polymerization (ATRP) reaction was investigated.ThenN-vinyl pyrrolidone (NVP) waspolymerized on the surface of macroinitiatorin presence of...

متن کامل

Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery

Objective(s): The main aim of current research was to develop a novel magnetically responsive hydrogel by radical polymerization of carboxymethyl cellulose (CMC) on acryl amide (Am) using N,N'-methylene bis acrylamide  (MBA)  as a crosslinking agent, potassium persulfate (KPS) as a free radical initiator, and  magnetic montmorillonite ( mMT)  nanoclay as nano-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007